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For the Lagrange interpolation polynomial L,,(j~ xl of degree ~n - "

defined by

k= 1, 2, ... , fl, (Ll )

of a given function I (based on n distinct points -1 ~ X nn <
x n _ I ,,,< ... <Xlll~ 1), P. Erdos and E. Feldheim [6] proved the following

THEOREM A. {f IEe[-I, 1] and Xkll' k=I,2.....,n, are the zeros of
TIl(x), the nth Chebyshev polynomial, then for any lixed p > 0,

lim fl IL"Lf,x]-/(xW(I-x2)-12dx=O. (1.2)
n_ 'X: -1

For a more detailed study of this kind of work we refer the reader to
P. Erdos and P. Turan [7], R. Askey [1], P. G. Nevai [l1J, P. Vcrtesi
[20], and A. K. Varma and P. Vertesi [19]. The corresponding study of
mean convergence of the Hermite-Fejer interpolation process was recently
initiated by Nevai and Vertresi [12]. In Ref. [12] weighted L o convergence
of Hermite-Fejer interpolation based on the zeros of a generalized Jacobi
polynomial was investigated. The main result of Ref. [12] gives necessary
and sufficient conditions for such convergence for all continuous functions.
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They mentioned that the main reason for the lack of the general theory
appears to be the complicated structure of explicit representation for the
Hermite-Fejer interpolating polynomial.

The object of this paper is to consider the problem of degree of
approximation (in the L p norm for any fixed p > 0) of a given continuous
function by various interpolatory (Hermite) processes based on the
Tchebycheff nodes. Now we turn to describe these results.

Let

(2k-l)n
X k == x k" = cos 2n k= 1, 2, ..., n, (1.3 )

be the zeros of T,,(x) = cos n{}, cos {} = x, the nth degree Tchebycheff
polynomial of the first kind. In this case the well-known Hermite-Fejer
interpolation polynomial is given by [8], [10]

"
H,,(f, x) = L f(xd hk(x),

k~l

where

(1.4 )

"L hk(x) == 1.
k~l

(1.5 )

Next, we define a polynomial Q,,(f, x) of degree :::; 2n + 1 by

(
1 +x T,,(X))2

Q,,(f, x) = H,,(f, x) + (f(I) - H,,(f, 1)) -2- T,,(I)

. (I-X T,b:))2+ (f( - 1) - H,,(f, -1)) -2- T,,( -1) .

It is known [3] that

(1.6)

Q,,(f, Xk) = f(xd, Q~(f, xd = 0,

Q,,(f, ± 1) = f( ± 1).

k= 1, 2, ..., n,
(1.7)

Concerning H,,(f, x) and Q,,(f, x) we shall prove the following

THEOREM 1. Let f E C[ -1, l] and let H,,(f, x) be as defined by (1.4).
Then for any fixed p > 0 we have

(1.8 )



and
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where c\> C2 are positive absolute constants and wf(b) is the modulus (~r

continuity of f
Remark. It is well known that for f E Lip 1 the error function

Ilf(x)-Hn(f,x)IIF is of order O(1ogn/n) and this is best possible (see
[2], [14], and [16]). On the other hand we can conclude from (1.8) that
the corresponding estimate in L p norm is O(1/n).

I[ fECi [ - 1, 1] then it is known that a Hermite interpolation
polynomial H,;(! x) of degree ~2n -1 which satisfies the conditions

is given by

d *f -)] - f'( - )-d [H n ( ,.\ Xc - X k, ,
x

k= 1, 2, .... n. (1.10\

n Ii

H,;U;x)= L f(xk)hk(xl+ L 1'(Xk)lJk(xl, (1.111
k=l k=l

where hk(x) is as in (1.5), the Xk'S are as in (1.3), and aJt) is given by

(1.12)

For the polynomial H,;(f, x) we shall prove the following:

THEOREM 2. Let fIx) be defined and have a continuous derivative 1'(x)
on [-1,1]. Then for the Hermite interpolation polynomial H,;Lf, xl
corresponding to the Tchebycheff abscissas of the first kind

(1.13 )

where E 2n - 2(f') is the best approximation to 1'(x) by pol.rnomials of degree
at most 2,11 - 2 and C3 is a positive absolute constant.

If we change the nodes of interpolation to the zeros of Tchebycheff
polynomials of the second kind,

sin(n+1)e
Un(x)= . e '

Sill
x = cos e, (1.14;
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then it is known that for many interpolation processes (this includes
Lagrange as well as Hermite-Fejer interpolation) convergence behaviour is
very poor with respect to the nodes of (1.14) especially near 1 or - 1. The
situation is not improved for the Lagrange interpolation on these nodes
even in problems of mean convergence. E. Feldheim [9J proved that for
the same abscissas it is not true that (r ~ 1)

(1.15 )

In fact the superior limit of the integrals in question may be + CIJ if I(x) is
a properly chosen continuous function. But the situation changes if we con­
sider Q:U, x), the so-called quasi-Hermite-Fejer interpolation polynomial
of degree <2n + 1 based on the extended Tchebycheff nodes of the second
kind. It is given by

* _(I+X I-x ) U~(x)
Q,,(f,x)- -2- / (1)+-2- / (-1) (n+l)2

" ? (U,,(X))2
+k~l/(tk)(I-X-)(I-xtk) (n+l)(x-td ' (1.16)

(1.17)

where the lk'S are the zeros of U,,(x).
In this case, P.Szasz [15J proved that lim,,~ooQ:(f,x)=/(x)

uniformly on [-1, 1J provided 1 E C[ -1, 1]. Later Saxena and Mathur
[21 J proved that if 1 E C[ -1, 1] we have

c" (J1=? 1)IQ:(f, x) - l(x)1 <;; k~l H'r k + k 2 .

Next let us denote by R,,(f, x) the Hermite-Fejer interpolation
polynomial of degree <2n + 3 satisfying the conditions

R,,(f, lk) = I(tk ),

R,,(f, ± 1) = f( ± 1),

R;,(f, td = 0, k = 1, 2, ... , n

R;,(f, ± 1) = 0,
(1.18 )

(1.19)

where the lk'S are the zeros U,,(x) given by (1.14). Concerning R,,(f, x), the
following pointwise estimate was obtained by Bojanic, Prasad, and Saxena
[3]. It is given by ( -1 <x < 1)

C4 ~ (J1=? 1) Cs
IR,,(f, x)- f(x)1 <- L. H' k +k2 +-5>

n k~l' n

where C4 , Cs are positive absolute constants.
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Concerning Q,;(f, x) and Rn(f, x) we shall prove the following:
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THEOREM 3. Let fEe[ -1, 1J and let Q:(f,x) be the quasi-Hermite­
Fejer interpolation polynomial of degree ~2n + 1 as stated in (1.16). Thenfor
any fixed p > 0, we have

Also, we have

(1,21)

where R,,(f, x) is defined by (1.18).

2. PRELIMINARIES

Here we state some known results which we shaH need later on. If lk(x)
is given by (1.12) then for -1:%; x:%; 1 it is known that

/jJx) :%; 2,
n

L n(x)~2.
k~1

(2.1 )

Also, from (1.4) it follows that for - I ~ x ~ 1

n

L hdx)= 1,
k~1

Next. if

k = 1, 2, ... , n. (2.2)

(-1 )k+ 1(1_ t~) Unix)

(n+ 1)(x-td
k = 1, 2, ..., 11, (2.3 i

then due to Erdos [5], Varma and Vertesi [19J, and Varma [18] we have
for -I:%; x:%; 1 respectively
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where the tk's are given by
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kn
t k =cos--

1
,

n+
k = 1, 2, ..., n. (2.6)

Further, from a known theorem of S. A. Teljakovskii [17] it follows that
there exists a polynomial P,,(x) of degree ~ n such that for all x,
-1 ~x~ 1,

(2.7)

and

Also for -1 ~ x ~ 1, we know that

IT,,(x)1 ~ 1.

3. SOME LEMMAS

(2.8 )

(2.9)

In this section we state and prove several lemmas which will be needed
later on.

LEMMA 3.1. If lAx) is as in (1.12) tlwnfor k= 1, 2, ..., n,

=0,

k=j

k#j. (3.1 )

Proof For the proof we refer the reader to Erdos and Tunin [7].

LEMMA 3.2. If (jk(X) is given by (1.12) then

k=j. (3.2)
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Proof From (1.12), (3.1), and using the orthogonal property of
Tchebycheff polynomials we have

r
l

O"k(X) 0"/X)(1_X 2
)-1/2 dx

" -I

=r (x-xd Ik(X)(X-Xj ) IJ(x)(1-x 2
)-12 dx

-I

Similarly. if k = j then due to (3.1) and

/ n
ITn(xdl = (1-.xD L2 '

it follows that

k = 1, 2, ..., n, (3.3 )

This proves Lemma 3.2.

LEMMA 3.3. If O"k(X) is given by (1.12) then

where P/l(x) is the polynomial for which (2.7) and (2.8) are mUd.

Proof. We have

640:56:2-8

(3.5 )
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So from (3.2) and (2.8) we have

rI [k~1 P~(Xk) O"k(X)r(1 - X
2
) -1/2 dx

= f (P~(xdf21\(1-xD~21[3Ci2n2 f (wAl/n))2
k~Inn k~ I

=cu(wf(l/n))2,

which yields (3.5). This proves Lemma 3.3.

In the work of Erdos and Feldheim [6] the following result played an
important role. Let lvn(x) == f.(x), v= 1, 2, ..., n, be the fundamental
polynomial of Lagrange interpolation based on the zeros of Tn(x). Then

where vI' V2, ... , V 2k are distinct integers between 1 and n. For the L p

convergence of a quasi-Hermite-Fejer interpolation process based on the
nodes (1- x 2

) UAx) the corresponding result is given by the following
lemma:

LEMMA 3.4. Let VI' V 2 , ... , V 2k be distinct integers between 1 and n. Then
we have

where

(3.7)

Proof From the earlier result [19, page 72] it follows that

(2k-IHn+ 1)+ I

(l-x2)k(Un(x))2k-I=I llicosi8. (3.8)
i=n

Since t"1, ...,tv2k are distinct it follows that Un(x)/(x-tvl)···(x-tv2k) IS

indeed a polynomial of degree ~ n - 2k. Next we also note that
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Therefore on using the orthogonality of a Tchebycheff polynomial of the
first kind it follows that

r1

XV\(x)"'X"2k(X)(l-X 2)- 12 dx
"-I

1 (2k - 1 H" + 1 i + 1

:X(V I , V 2 " 'V 2k ) J Qn-2k(X) L p,T;lX)(1-X2
)-12 dx=O.

~l i=n

Let us introduce the linear operator

n

L,;[J, x] = L fUd xdx),
k~1

(3.10)

where Xk(X) is defined by (3.7) and the tk's are the zeros of [in(x) given by
(2.6). On using (3.6) and some simple computation we obtain

d

J
') () 2) - L" dxAx Xk x,(1-x- x=O,

-I

On using (3.11) we obtain

j=f-k

j=k. (3.11)

(3.12 )

Also, from (3,12) and the Cauchy-Schwarz inequality for integrals we also
have

r 1 , "
I IL,;[j;x]1 (1-r)-I-dx~n max Ifix)l.
J- t -l~x~l

4. PROOF OF THE THEOREMS

(3.13 )

For the proof of Theorem 1 and Theorem 3 we follow the method of
Erdos and Feldheim [6]. It is enough to prove the theorems for even
values of p only. In the case of the proof of Theorem 3 we limit for the case
p = 4. For arbitrary fixed even p the proof is similar.
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Proof of Theorem 1. Let Pn(x) be the polynomial of degree ";;;n for
which (2.7) and (2.8) are valid. Due to (1.4) we have

On using (2.2) and (2.7) it follows that

n

,,;;; wr(l/n) L hk(x)";;; l~j(l/n). (4.2)
k~l

Thus to complete the proof of (1.8) we must prove that

From the uniqueness of Hermite interpolation we have

n n

= L P~(XdO"k(X)= L P;,(Xk)(X-Xk)I~(x)
k= 1 k~ 1

n

= Tn(x) L gO(Xk) lk(x) =T,,(x) L,,[go, x],
k=l

where

(4.3 )

Now, on using Theorem A of Erdos and Feldheim [6] and Igo(x)1 ,,;;;
C1slt'r(l/n) we have

,,;;; C l 6 (f IlL" [go, x]1 2P(1 - X2
)-1/2 dxY/2P

";;;c 17 max Igo(x)1
-l:=.:;x~l
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This proves (4.3) and at the same time inequality (1.8). Proof of the
inequality of (1.9) is a direct consequence of (1.8), (1.6), and the known
estimate [3] (see formula (1.4) IH Il (/, ±1) - f( ±1)1 ::::; c 19 1I'f{l/n).

This proves Theorem 1. Next we turn to prove Theorem 2.

Proof of Theorem 2. One can easily see that for - 1 ::::; x ::::; 1

where S211-dx) is the polynomial of best approximation of f(xl and
H,;(f,x) is given by (1.11). From (4.4) it follows that

.J

! [H::U;xl-f(x)fU-X 2
)-

12 dx
.' -I

::::;2 rl

[H,;(f-S211_I,X)f{l-X 2)- 12 dx
• -I

+2fl [S211_dx)-f(xl]2(1-x2)-'2dx=,1I+L12' (4.5)
-1

From the definition of S2n-1 (x) we have for -1::::; x::::; 1,

(4.6)

where £211-1 (f) is the best approximation of fix). Consequently due to
(4.6) we get

·1
":<2(£ (f))21 '1 2)-1'2d'? £2 ' f)LJ 2'" 211 - 1 . ~ - x -"I: = ~rr 2n - I\}'

• -1

Next, we turn to estimate AI' We have

(4.7)

,11::::;4L1[k~1 If(xkl- S 2n-l(xk )1 hk(x)T (l_x2)-1/2dx

+4r [f (f'(Xk)-S;Il_1crk))lJAx)JT(1-.".2)-12dX
-I k~1

=A 3 +A 4 • (4.8)

Now, from (4.6) and (2.2) it follows that

A3~ 4£~1l-1(f) (I [k~1 hk(x)r(1- X
2
)-1 2dx

= 4rr£~n_l(f). 14.9)
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Further, on using Lemma 3.2 we have

-I n

.1 4 =4 j L (f'(xd-S;,,_dxk)f()~(x)(I-X2)-1!2dx
-lk~l

?n "
=~ L (f'(Xk) - S;n_I(Xk ))2(l- xn (4.10)

n k~1

Next, on using a theorem of J. Czipszer and G. Freud [4] and
Corollary 1.44 of T. J. Rivlin [13, p. 23], we get

(l-xk)1/21f'(xk)-S;,,_I(xk )1 ::;;;40E2,,_2(f'). (4.11)

Consequently from (4.10), (4.11) it follows that

Thus, from (4.8), (4.9), and (4.12) we obtain

Al ::;;; 4nE~n_l (f) + c21 n -2E~n -2(f')

::;;; cn n- 2E~n _ 2(f')·

Due to Rivlin [13, p. 23], we have

E2" -I (f)::;;; 2n~ 1 E 2n _ 2(f')·

(4.12 )

(4.13 )

(4.14 )

On using (4.13), (4.7), and (4.14) we have (1.13). This completes the proof
of Theorem 2 as well.

Proof of Theorem 3. First we need to show that for f E C[ - 1, 1],

Since

Q:(f, x) -f(x) = Q:(f - P n, x) + Q:(Pn, x) - Pn(x) + Pn(x) - f(x),

(4.16 )

where Pn(x) is the polynomial which satisfies (2.7) and (2.8), in view of
(2.7) and since Q:(f, x) is such that If I ::;;; C24 implies IIQ:Cf, xlii::;;; C24 we
have
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Next, we consider
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Further, one can easily see that

n

Pn(X) - Qf~(Pn, x) = (l_x2)1/2 Unix) I gild Xk(X), (4.19)
k~l

where

g(x)= _ Tn+dx) P~(x)(l-x2)12
n+l

and

Also it is well known that for - 1 :::;; x :::;; 1

Consequently from (4.19) and (4.22) it follows that

We also note (see (2.8) and (2.4)) that for -1 :::;;x:::;; 1

(4.20)

(4.21. ;

(4.22)

(4.23)

(4.24)

Now, we may write

Il:::;; III = IlI1 + 1112 + 1113 + Pl"- + 1115'

where on using (2.5) and (2.4)

(4.25\
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Next, we note that
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J112 =f L L g2(tk) g2(tj) X~(.X") X](X)( 1- X2)- li2 dx
-I k"!'j

:s:;f f f g2(tdg2(tj)X~(X)X](x)(l-X2)-1/2dx
-I k~1 j~1

:S:;C 33 (wf(lln))4 (I C~I X~(X))(t X](X)) (l-X
2
)-1!2dx

:S:;4C 33(wf(lln))4 (I (l_X2)-1!2 dx=4c33n(wjlln))4. (4.27)

Next, we observe that (Lemma 3.4)

/113 = rl

L LL L g(td g(t;) g(t;) g(tm)·
·-1 k"!'j"!'i"!'m

X Xk(X) xix) dx) Xm(x)(l-x 2)-lf
2 dx

= O. (4.28)

Next, we observe that

/114= f LLg3(tk)g(lj)xk(X)xiX)(l-X2)-lf2 dX
-I k"!'j

(4.29)

Hence, on account of (2.4), (2.5), (4.24), (4.26), (3.10), and (3.13)

1/1141 :s:; C34( wf(lln))3 (1 Ik~1g(tk) Xk(X) I(l _~:2)lf2

+ C35(wf(lln))4

:s:; C34(wf(lln))3n max Ig(x)\ + C35(~t'r(llnW
-l~x~l

:s:; C34(wf(lln WnC30 wf(lln) + C35(~'r(lln))4

:s:; C36( wf( lin) )4. (4.30)
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(4.31 )

·1

J.115 = J LLL g2(tk) xt(X) g(tj ) X)X) g(til v(X)(1-X2)-12 dx
-I kT't#i

~ 1 n

= j L g2(tk) xt(X)
-I k~ 1

. n )2X( L g(tk ) Xk(X) (1-X 2
)-

1/2
dx-PI4-,u12'

\k~1

Therefore. on using (4.27), (4.30), and Lemma 3.4 we have

I ( n \ 2

l,u I5 !~ C37(Wr( 1/n)fL
I

k~I g(tk)Xk(X)) (1- X2)-12 dx

+ C3S( wf(1/n))4

~C37(Wr(1/n))2 1'1 f g2(tkld(x)(1-x2)- 12 dx
• -I k~ 1

.1 n

~ C39(Wr(l!n))4 J L XK\")(1-x 2) -12 dx + C3S(Wr(1/n))4
-I k~ 1

~ C40( wf(l/n) )4. (4.32)

On combining (4.32), (4.30), (4.27), (4.28), (4.26), and (4.25) we obtain

(4.33 )

Now, on using (4.16), (4.17), (4.18), and (4.33) we obtain (1.20). Proof of
(1.21) is a simple consequence of [3]

the representation given in the work of Bojanic, Prasad, and Saxena [3l.
and inequality (1.20).
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